
WCTP Developers Guide 
Arch Wireless Implementation 

 



 ii

Table of Contents 
 
1 About Arch Wireless................................................................................................... 1 
2 Introduction to WCTP................................................................................................. 3 
3 Naming Conventions Used in this Manual ................................................................. 4 
4 Common Mistakes in HTTP and XML with WCTP .................................................. 5 
5 WCTP Operations ....................................................................................................... 6 

5.1 Standard WCTP Operations................................................................................ 6 
5.1.1 Submit Client Message ............................................................................... 6 
5.1.2 Client Query................................................................................................ 7 

5.2 Enterprise WCTP Operations .............................................................................. 9 
5.2.1 Submit Request ........................................................................................... 9 
5.2.2 Poll For Messages ..................................................................................... 11 
5.2.3 Status Info ................................................................................................. 11 

5.3 Versioning......................................................................................................... 12 
5.3.1 Tokens ....................................................................................................... 12 
5.3.2 Version Query........................................................................................... 12 

6 Messaging Conventions ............................................................................................ 14 
6.1 Messaging to Devices ....................................................................................... 14 
6.2 Messaging to Applications................................................................................ 14 
6.3 Messaging to Applications from a Device ........................................................ 14 

7 Examples of Common Applications ......................................................................... 15 
7.1 Client Sending a Message ................................................................................. 15 
7.2 Client Getting a Delivery Confirmation ........................................................... 17 
7.3 Enterprise Client Sending a MCR Message ...................................................... 19 
7.4 Device Originated Message to an Application ................................................. 22 

8 Example Enterprise Application Framework............................................................ 26 
8.1 Proxy Model...................................................................................................... 26 
8.2 Push Based Model............................................................................................. 27 
8.3 Central Database for the Proxy ......................................................................... 27 

8.3.1 Inserting a Receipt .................................................................................... 28 
8.3.2 Querying a Receipt.................................................................................... 28 
8.3.3 Updating a Receipt.................................................................................... 28 
8.3.4 Purging the Database ................................................................................ 28 

8.4 Using a Proxy in the Enterprise ........................................................................ 28 
8.4.1 Distributed Applications ........................................................................... 28 
8.4.2 Access Control.......................................................................................... 28 
8.4.3 Logging ..................................................................................................... 29 

9 Where to Find the Protocol....................................................................................... 30 
10 Commercial Software ........................................................................................... 31 
11 Available API’s..................................................................................................... 32 
12 What’s included on the CD? ................................................................................. 33 



 1

1  About Arch Wireless 

Arch WirelessTM is Leading the Way in Wireless Communications  
Arch Wireless Inc. is the premier provider of end-to-end wireless enterprise 
solutions, wireless e-mail, instant text messaging and mobile Internet access. We 
offer a broad range of wireless data solutions to companies looking to gain a 
competitive advantage by enhancing productivity as well as to individuals who 
want to make their daily on-the-go lives easier and more manageable. 
 
Arch Wireless has more than 250 offices and company stores across the U.S., 
serving millions of individuals and hundreds of Fortune 1000 and smaller 
companies. Our expert consultants are ready to work directly with businesses of 
all sizes to help create and integrate a custom wireless data solution into their 
existing infrastructure. 
 
All of Arch Wireless' innovative, interactive solutions take advantage of the 
powerful Arch Wireless data network—the most robust and reliable of its kind in 
North America. With superior coverage throughout all 50 states, D.C., Canada, 
the Caribbean, Mexico and Puerto Rico, Arch customers get the information that's 
needed most—from virtually anywhere business or life takes them. 
 
The Arch Wireless Network Delivers  
The Arch Wireless Network uses the highly efficient ReFLEX® 25 digital point-
to-multipoint platform and offers higher signal strength, in-building penetration, 
and far greater landmass and population coverage of cellular, PCS, and wireless 
broadband combined. Today the Arch Network can provide coverage to more 
than 93% of the U.S. population. With ongoing enhancements, our network will 
be providing subscribers with superior two-way wireless data services for years to 
come. 
 
The Benefits of Arch Wireless Are Clear  

?? Ubiquity - Arch's network provides unmatched coverage in all 50 states, 
DC, Canada, Mexico, and the Caribbean.  

?? Reliability - The strength of the signal delivered over the Arch Wireless 
network assures a higher quality transmission and substantially greater 
assurance of message receipt—indoors and out.  

?? Bandwidth – Arch has extensive spectrum assets, positioning us to 
effectively handle the growth and capacity in two-way wireless 
communication.  

?? Customization - To create the perfect wireless data solution tailored to 
your specific needs, Arch Wireless' expert consultants work directly 
with your organization every step of the way.  



 2

?? Integration - Arch Wireless uses a open standard connection protocols, 
making our services easy to integrate and expand upon as your needs 
grow.  

 
Our Management Team 
C. Edward Baker, Jr., Chairman and Chief Executive Officer 
Lyndon R. Daniels, President and Chief Operating Officer 
Steven C. Gross, Executive Vice President, Sales and Marketing 
Paul H. Kuzia, Executive Vice President, Technology and Regulatory Affairs 
J. Roy Pottle, Executive Vice President and Chief Financial Officer 
John B. Saynor, Executive Vice President, Corporate Development 
Peter Barnett, Senior Vice President, Operations, and Chief Information Officer 
Patricia A. Gray, Senior Vice President and General Counsel 
Christopher J. Madden, Senior Vice President, Human Resources 
Mark L. Witsaman, Senior Vice President, Technology, and Chief Technology 
Officer 
Gerald J. Cimmino, Vice President and Treasurer 
George W. Hale, Vice President, Finance and Controller 
Robert W. Lougee, Jr., Vice President, Corporate Communications and Investor 
Relations 
 
Our Corporate Headquarters  
1800 West Park Drive, Suite 250 
Westborough, MA, 01581 
Phone: 508-870-6700 
Fax: 508-836-3626 

 



 3

2  Introduction to WCTP 
 
WCTP (Wireless Communications Transport Protocol) is based on XML 1.0 and is 
currently maintained by the Personal Communications Industry Association (PCIA.)  
WCTP was originally a joint project between a wireless carrier, some manufacturers, and 
an ASP.  WCTP was given to the PCIA as a proposal for a two-way protocol to support 
the newly deployed networks.  All of the member carriers of PCIA adopted WCTP as the 
official two-way wireless messaging protocol.  The existing version of the protocol was 
renamed 1.0 and adopted.  After a couple of carriers implemented the protocol a working 
group was formed to enhance WCTP.  WCTP 1.1 was recently released, and 1.2 and 2.0 
versions are currently under development.  In the 1.1 version of the protocol versioning 
was introduced.  It is not efficient to query version information every time a connection 
to a server is made.  A mechanism was introduced to allow a token to exist in the 
response document for every transaction.  This token could then be compared with the 
previously stored token to determine if any changes had taken place with the current 
implementation.  If change had occurred, then a Version Query would be appropriate.   
One of the additional requested feature sets for 2.0 is SMS functionality.  The 1.2 version 
will clear up inconsistencies in the protocol and improve the readability of the document. 
 
WCTP is not designed for a given wireless protocol, and bi-directional communications 
are supported.  The transport model for the protocol is request/response oriented.  Every 
WCTP document that is delivered will receive a WCTP document as its reply.  This 
could either be a success or failure notification. 
 
The protocol is device and platform independent.  In fact, many devices do not have any 
native support for WCTP.  Currently, the WCTP protocol is used to access are either 
pagers or PDA’s.  These could be anything from numeric one-way to two-way pagers and 
PDA’s with wireless connectivity.  WCTP has already been used to deliver messages to 
devices that operate on Flex, ReFlex, and Mobitex.  There is also a SMS gateway that has 
the capability to translate WCTP requests. 
 
 
 
 
  



 4

3  Naming Conventions Used in this Manual 
 

WCTP Server The term WCTP server is used to identify a WCTP gateway at 
the carrier.  In other words, this is the final destination for the 
WCTP communication before it reaches the device. 

Receipts A receipt is a confirmation of delivery.   

Transient Client A transient client talks to a WCTP server but does not have a 
permanent ‘home.’  A transient client may later go back to 
check for receipts and device replies using a Client Query, but 
a device is not able to reply to a transient client message.  A 
transient client also can’t have receipts posted back to it.  A 
transient client uses the Submit Client Message operation to 
send WCTP messages. 

Enterprise Client An enterprise client picks up where a transient client leaves 
off.  A device can reply to messages sent by an enterprise 
client.   An enterprise client can also specify an application for 
replies and receipts to be posted to. 

Enterprise 
Application 

An enterprise application is an application that lives on the 
internet that a WCTP server posts operations to.  The WCTP 
server may post receipts or replies to the enterprise 
application. 

Device ID A device ID is the number that is assigned to the device by 
your carrier. 



 5

4  Common Mistakes in HTTP and XML with WCTP 
WCTP currently has only one implemented transport model.  This is based on HTTP.  
HTTP has several headers that are important to the functionality of WCTP.  The most 
common area of mistake is the Content-Length field.  If you do not have the correct value 
in this field, it is likely that you will receive a WCTP 301 Parse Error.  An assumption is 
also made about the nature of HTTP 1.1.  No reference implementation currently exists to 
allow transaction chaining via HTTP 1.1.  If HTTP 1.1 is used, you should expect to see 
the Connection-Closed directive after receiving a response from the remote WCTP 
server.  Problems have also been discovered in using the same IP address for multiple 
web sites.  The naming convention of http://wctp.xxx.xxx/wctp is intended to allow for 
shorter addresses with over the air protocols.  You may need to diagnose the 
configuration of your HTTP server to ensure that no problems arise from this convention. 
 
Other modes of transport are possible, but have not been tested, and not all operations in 
WCTP lend themselves to asynchronous transfer.  It is expected that at some point in the 
future a raw port will be assigned for WCTP communications that does not require the 
construction and destruction of an HTTP connection. 
 
Another common problem arises from the nature of CDATA in XML.  It is necessary to 
escape XML entities: 
 
> &gt; 
< &lt; 
& &amp; 
” &quot; 
‘ &apos; 
 
If you want a message to display one of these characters on the device, you need to 
replace them with their escaped values. 
 
WCTP is an example of XML, and a DTD is the current document used to ensure that 
WCTP is not only well formed, but valid.  The URI for the DTD you are using must be 
one that can be resolved by both participants in WCTP communications.  Some parsers 
have also been found to attempt to request a DTD from a remote source even when this 
feature is disabled. 
 
WCTP gains most of its power and simplicity by leveraging the existing standards of 
HTTP and XML.  This does not provide complete functional abstraction for all 
implementations, so be sure that you are truly familiar with HTTP and XML before 
assuming that the remote system you are communicating with is flawed.  At least, be sure 
that you have a copy of the current RFC/Specification from http://www.ietf.org/ or 
http://www.w3.org/.  



 6

5  WCTP Operations 
For the purpose of this manual, all WCTP operations have been divided into two 
categories.  Standard operations are used by transient clients.  Enterprise operations are 
used by both enterprise clients and enterprise applications.  Versioning is a special kind 
of operation that is explained later in this chapter. 

5.1  Standard WCTP Operations 

5.1.1  Submit Client Message 

 
A WCTP Submit Client Message is the most basic form of a WCTP operation.  A 
transient client may obtain receipts and device replies using the Client Query operation.  
A transient client may not route replies to another device.  A transient client formats a 
packet and submits it to a WCTP server.  The server checks for any immediate error 
conditions (such as bad XML or an invalid subscriber) and responds with either a success 
or failure packet.  Required parameters include a sender ID and a recipient ID.  
Frequently used optional parameters include setting a message as preformatted, including 
a timestamp, and requesting a confirmation of delivery.  The following are some brief 
definitions of commonly used parameters in a WCTP Client Message: 
 
senderID Required field used to identify the sender.  This is not a well-

defined field for transient clients and is expected to be 
deprecated in the future.  

recipientID Used to identify the device ID that you are sending the message 
to. 

notifyWhenQueued This lets the server know that you will want to know when the 
message has been queued to be sent to the device. 

notifyWhenDelivered This lets the server know that you will want to know when the 
message has been sent to the device. 

preformatted This lets the server know to preserve white space and carriage 
returns in the payload.  The user should be made aware that the 
white space and carriage returns may be counted as billed 
characters. 

submitTimestamp The timestamp indicates the time that the message was sent in 
GMT. 

 
The following XML is a WCTP Submit Client Message packet: 



 7

 
<!DOCTYPE wctp-Operation SYSTEM "http://dtd.wctp.org/wctp-dtd-v1r1.dtd">  
<wctp-Operation wctpVersion=“wctp-dtd-v1r1”>  
 <wctp-SubmitClientMessage>  
  <wctp-SubmitClientHeader submitTimestamp="2001-07-31T17:56:05">  
   <wctp-ClientOriginator senderID="sender@arch.com"/>  
   <wctp-ClientMessageControl  
    notifyWhenQueued="true"  
    notifyWhenDelivered="true"  
    notifyWhenRead="false"  
   /> 
   <wctp-Recipient recipientID=”DEVICEID@arch.com”  />  
  </wctp-SubmitClientHeader>  
  <wctp-Payload>  
   <wctp-Alphanumeric>test</wctp-Alphanumeric>  
  </wctp-Payload>  
 </wctp-SubmitClientMessage>  
</wctp-Operation> 
 
The following XML is a response from a WCTP server for a valid message. 
  
<?xml version="1.0"?>  
<!DOCTYPE wctp-Operation SYSTEM "http://dtd.wctp.org/wctp-dtd-v1r1.dtd">  
<wctp-Operation wctpVersion="wctp-dtd-v1r1" wctpToken="11AA">  
 <wctp-SubmitClientResponse>  
  <wctp-ClientSuccess  
   successCode="200"  
   successText="Accepted"  
   trackingNumber="0004997072"  
  >  
    
        Your message for DEVICEID@arch.com has been accepted for delivery. 
  
  </wctp-ClientSuccess>  
 </wctp-SubmitClientResponse>  
</wctp-Operation> 

5.1.2  Client Query 

 
A Client Query is sent by a transient client to a WCTP server.  The client must first send 
a WCTP Client Message that specifies notification upon delivery.  The server will 



 8

respond with a tracking number.  The tracking number is then used to obtain delivery 
status (either QUEUED or DELIVERED) and device replies.  The required parameters 
for a WCTP Client Query are a sender ID, recipient ID, and tracking number.  The 
following table describes these fields in more detail: 
 
senderID The senderID that was indicated in the original message.  Typically, 

this field is used by a WCTP server to key on a database. 
recipientID The recipientID that is indicated in the original message.  Typically, 

this field is used by a WCTP server to key on a database. 
TrackingNumber The tracking number that was returned by the WCTP server when 

the message was originally sent. 
 
The following XML shows a Client Query operation: 
 
<?xml version="1.0"?>  
<!DOCTYPE wctp-Operation SYSTEM "http://dtd.wctp.org/wctp-dtd-v1r1.dtd">  
<wctp-Operation wctpVersion=“wctp-dtd-v1r1">  
 <wctp-ClientQuery  
  senderID="sender@arch.com"  
  recipientID="DEVICEID@arch.com "  
  trackingNumber="0004997072"  
 />  
</wctp-Operation>  
 
The following shows the XML response from a WCTP server reporting the message is 
QUEUED, but not DELIVERED: 
 
<?xml version="1.0"?> 
<!DOCTYPE wctp-Operation SYSTEM 
"http://www.pcia.com/wireres/protocol/dtd/wctpv1-0.dtd"> 
<wctp-Operation wctpVersion=“wctp-dtd-v1r1” wctpToken="11AA"> 
 <wctp-ClientQueryResponse> 
  <wctp-ClientMessage> 
   <wctp-ClientStatusInfo> 
    <wctp-ClientResponseHeader> 
     <wctp-Originator senderID="sender@arch.com " /> 
     <wctp-Recipient recipientID="DEVICEID@arch.com " /> 
    </wctp-ClientResponseHeader> 
    <wctp-Notification type="QUEUED" /> 
   </wctp-ClientStatusInfo> 
  </wctp-ClientMessage> 
 </wctp-ClientQueryResponse> 
</wctp-Operation> 
 
The following XML shows the response from a WCTP server reporting the message is 
DELIVERED: 



 9

 
<?xml version="1.0"?> 
<!DOCTYPE wctp-Operation SYSTEM 
"http://www.pcia.com/wireres/protocol/dtd/wctpv1-0.dtd"> 
<wctp-Operation wctpVersion=“wctp-dtd-v1r1” wctpToken="11AA"> 
 <wctp-ClientQueryResponse> 
  <wctp-ClientMessage> 
   <wctp-ClientStatusInfo> 
    <wctp-ClientResponseHeader> 
     <wctp-Originator senderID=” sender@arch.com” /> 
     <wctp-Recipient recipientID="DEVICEID@arch.com " /> 
    </wctp-ClientResponseHeader> 
    <wctp-Notification type="QUEUED" /> 
   </wctp-ClientStatusInfo> 
  </wctp-ClientMessage> 
  <wctp-ClientMessage> 
   <wctp-ClientStatusInfo> 
    <wctp-ClientResponseHeader> 
     <wctp-Originator senderID=” sender@arch.com” /> 
     <wctp-Recipient recipientID="DEVICEID@arch.com " /> 
    </wctp-ClientResponseHeader> 
    <wctp-Notification  type="DELIVERED" /> 
   </wctp-ClientStatusInfo> 
  </wctp-ClientMessage> 
 </wctp-ClientQueryResponse> 
</wctp-Operation> 

5.2  Enterprise WCTP Operations 

5.2.1  Submit Request 

 
A WCTP Submit Request is an enterprise message that is sent to the gateway.  The 
Submit Request operation offers increased functionality to over the Submit Client 
Message operaton.  Most notably, a Submit Request uses the sender ID field to indicate 
where a device should respond.  Possible destinations include another device or an 
application.  An enterprise client will format a Submit Request operation and submit it to 
a WCTP server.  The server parses the XML for any immediate error conditions such as 
an invalid subscriber or invalid XML.  Either a success or failure is returned to the 
enterprise client.  Required fields for a Submit Request are a sender ID, message ID, and 



 10

recipient ID.  Frequently used fields include submitTimestamp, sendResponsesToID, 
notifyWhenQueued, notifyWhenDelivered, and preformatted.  The following are some 
brief definitions of commonly used parameters in a WCTP Submit Request: 
 
senderID This field indicates where to send responses to.  This may be a 

device ID or the URL of an enterprise application. 
messageID This field should uniquely identify the message. 
recipientID Used to identify the device ID that you are sending the 

message to. 
submitTimestamp The timestamp indicates the time that the message was sent in 

GMT. 
sendResponsesToID This field can be used to specify an application where you 

want any device responses or receipts sent to. 
notifyWhenQueued This lets the server know that you will want to know when the 

message has been queued. 
notifyWhenDelivered This lets the server know that you will want to know when the 

message has been delivered to the device. 
preformatted This lets the server know to preserve white space and carriage 

returns in the payload.  The user should be made aware that 
the white space and carriage returns may be counted as billed 
characters. 

 
The following XML shows a Submit Request operation: 
 
<?xml version="1.0"?>  
<!DOCTYPE wctp-Operation SYSTEM "http://dtd.wctp.org/wctp-dtd-v1r1.dtd">  
<wctp-Operation wctpVersion=“wctp-dtd-v1r1”>  
 <wctp-SubmitRequest>  
  <wctp-SubmitHeader  
    submitTimestamp="2001-07-31T18:49:06"  
  >  
   <wctp-Originator  
     senderID="MSG:fakeid@fakeserver.com:8080/fakeApplication"  
   />  
   <wctp-MessageControl  
     allowResponse="true"  
     messageID="7443axp"  
     notifyWhenDelivered="true"  
     notifyWhenQueued="true"  
     notifyWhenRead="false"  
   />  
   <wctp-Recipient  
     recipientID="DEVICEID@arch.com"  
   />  
  </wctp-SubmitHeader>  
  <wctp-Payload>  



 11

   <wctp-Alphanumeric>test</wctp-Alphanumeric>  
  </wctp-Payload>  
 </wctp-SubmitRequest>  
</wctp-Operation> 
 
The following XML shows a response from a WCTP serve r showing a that the message 
was accepted. 
 
<?xml version="1.0"?> 
<!DOCTYPE wctp-Operation SYSTEM 
"http://www.pcia.com/wireres/protocol/dtd/wctpv1-0.dtd"> 
<wctp-Operation wctpVersion=“wctp-dtd-v1r1” wctpToken="11AA"> 
 <wctp-Confirmation> 
  <wctp-Success successCode="200" successText="Accepted"> 
        Your message for DEVICEID@arch.com has been accepted for delivery. 
  </wctp-Success> 
 </wctp-Confirmation> 
</wctp-Operation> 

5.2.2  Poll For Messages 

 
The WCTP Poll For Messages operation is used by an enterprise application to pull 
receipts or device replies from a WCTP server.  However, the preferred method for 
obtaining receipts is to have the receipts and device responses pushed to an enterprise 
application. 

5.2.3  Status Info 

 



 12

In current implementations, the WCTP Status Info operation is most commonly used by a 
WCTP server to post receipts and device originated replies to an enterprise application.  
For example, an enterprise client has indicated that it wants to be notified when a 
message has been delivered.  The enterprise client has indicated to send receipts to an 
enterprise application at http://someserver:8080/wctpReceipts.  At some point, the WCTP 
server knows that the message has been delivered so it posts a Status Info operation to 
that URL with the notification type of DELIVERED.  Similarly, if an enterprise 
application indicates to send responses to the previous URL, the WCTP server will post 
device replies to that address. 

5.3  Versioning 
The 1.1 revision of WCTP introduced the notion of versioning.  Versioning allows a 
WCTP server to keep standard and enterprise clients informed about the status of the 
gateway.  Two mechanisms are used for versioning in WCTP.  Those mechanisms are 
tokens and the Version Query operation. 

5.3.1  Tokens 
A token is used by a WCTP server (or possibly an enterprise application) to indicate to 
clients that there has been a change in the gateway.  While there are not currently any 
specific conventions to define a token format, any change in the token should be enough 
for the client to acknowledges changes in the server.  This is done using a Version Query 
operation. 
 
The following XML snippet shows where a version token is located: 
 
<wctp-Operation wctpVersion=“wctp-dtd-v1r1” wctpToken="11AA"> 

5.3.2  Version Query 

 
The Version Query operation is used to acquire information about a WCTP server.  The 
client can acquire the gateway version and a list of DTD’s currently supported by the 
gateway.  The required field for a Version Query is the inquirer.  To obtain a list of 
DTD’s the listDTDs option should be set to true.  The following are some brief 
definitions of useful fields in the Version Query operation: 
 
inquirer This field represents a URI that identifies the entity making the version 

inquiry. 
listDTDs Setting this option to ‘true’ indicates that you want a list of supported 

DTDs. 
 
The following XML shows a Version Query: 



 13

 
<?xml version="1.0"?>  
<!DOCTYPE wctp-Operation SYSTEM "http://dtd.wctp.org/wctp-dtd-v1r1.dtd">  
<wctp-Operation wctpVersion=“wctp-dtd-v1r1”>  
 <wctp-VersionQuery  
  inquirer="sender@arch.com" 
  dateTime="2001-07-31T18:53:33" 
 /> 
</wctp-Operation> 
 
<?xml version="1.0"?> 
<!DOCTYPE wctp-Operation SYSTEM " http://dtd.wctp.org/wctp-dtd-v1r1.dtd "> 
<wctp-Operation wctpVersion=“wctp-dtd-v1r1” wctpToken="11AA"> 
 <wctp-VersionResponse 
  responder="wctp.arch.com/wctp" 
  dateTimeOfRsp="2001-07-31T18:54:40" 
  inquirer="sender@arch.com" 
  dateTimeOfReq="2001-07-31T18:53:33" 
 > 
  <wctp-DTDSupport 
    dtdName=”wctp-dtd-v1r1” 
    verToken=”11AA” 
    supportType=”Supported” 
   /> 
   <wctp-DTDSupport 
    dtdName=”wctp-dtd-v1r0” 
    supportType=”Deprecated” 
   /> 
 </wctp-VersionResponse> 
</wctp-Operation> 



 14

6  Messaging Conventions 

6.1  Messaging to Devices 
To message to a device use the ID that was assigned to the device by your carrier 
followed by a carrier-specific domain.  For example, if your device ID is 1234567, then 
you use this in the senderID field: 
 
senderID=”1234567@arch.com”   

6.2  Messaging to Applications 
To message to an enterprise application from a enterprise client you use the URL of your 
application.  In this example, let’s assume that you have an application at 
http://somewhere:8080/yourApplication/.  You would indicate to route responses to an 
application in the Submit Request operation with the following: 
 
senderID=”MSG:username@somewhere:8080/yourApplication” 
 
Where the format is: 
 
MSG:someid@<server>:port#/application/ 
 
If a port is not specified, port 80 is assumed. 
 
Note that “MSG:” is prepended to the URL.  This indicates to the server that the 
senderID is either an address or a poller ID.  This manual does not cover polling, so we 
will assume it is only for enterprise applications at this point. 
 

6.3  Messaging to Applications from a Device 
To message to an enterpries application from a device you use the same conventions as 
listed in section 8.2.  The type of response should be set to ‘email’ on the device. 
 
 



 15

7  Examples of Common Applications 
 
The following applications use the Arch Wireless WCTP Factory API for basic 
functionality. 

7.1  Client Sending a Message 
In this example an application will be built that sends a Client message to a WCTP server 
and receives a success or failure response.  This application is non-graphical and must be 
run from DOS or a UNIX shell prompt. 
 
import java.net.*; 
import java.io.*; 
 
import com.arch.wctp.*; 
 
/** 
 * SendTestMessage 
 * This class is used to send a Submit Client Message to a WCTP gateway. 
 * Creation Date: 7-31-2001 
 */ 
class SendTestMessage { 
 private HttpURLConnection wctpConnection = null; 
 private WctpClientOperations clientOps = null; 
 private WctpClientReceive clientRx = null; 
 
 private String trackNo = null; 
 
/** 
 * This method sends a Client message to a WCTP gateway. 
 */ 
private void sendMessage(String gateway, String deviceID, String message,  

String senderID) { 
 // Instantiate the ClientOperations class 
 clientOps = new WctpClientOperations(); 
  
 // Build the operation 
 String body = clientOps.submitMessage(clientOps.getTimestamp(),  

deviceID, message, senderID, true);  
  
 // Set up the URL 
 URL archWireless = null; 
 try { 
  archWireless = new URL(gateway); 
 } 
 catch (java.net.MalformedURLException mue) { 



 16

  System.out.println("Unable to connect to specified URL"); 
 } 
  
 // Create a new HttpURLConnection object to use for communication 
 // Note that this connection is reused in the getResponse() method 
 wctpConnection = clientOps.sendWctpPacket(archWireless, body); 
} 
 
/** 
 * This method is used to get a response from a WCTP server. 
 */ 
private void getResponse() { 
 // Instantiate the receive class 
 clientRx = new WctpClientReceive(); 
 
 // Get back the success or failure response from the server 
 String response = clientRx.readResponse(wctpConnection); 
 
 // Parse the response for the success or failure code 
 int responseCode = clientRx.getResponseCode(response); 
 String codeText = clientRx.findCode(responseCode); 
 
 // Save the tracking number for future use 
 trackNo = clientRx.getTrackingCode(response); 
 
 // Output the three variables 
 System.out.println("The response code is: " + String.valueOf(responseCode)); 
 System.out.println("The response text is: " + codeText); 
 System.out.println("The tracking code is: " + trackNo); 
} 
 
/** 
 * This is the main method of the application. 
 */ 
public static void main(java.lang.String[] args) { 
 SendTestMessage stm = new SendTestMessage(); 
 
 // Prompt the user for the gateway information 
 String deviceID = null; 
 String mssg  = null; 
 String gateway  = null; 
 String senderID = null; 
  
 try { 
  BufferedReader in = new BufferedReader( 

new InputStreamReader(System.in)); 



 17

 
  // Get the gateway URL 
  System.out.println("\nEnter the gateway URL:"); 
  gateway = in.readLine(); 
 
  // Get the Device ID 
  System.out.println("\nEnter the Device ID:"); 
  deviceID =  in.readLine(); 
 
  // Get the Sender ID 
  System.out.println("\nEnter the Sender ID:"); 
  senderID =  in.readLine(); 
   
  // Get the message text 
  System.out.println("\nEnter the message text:"); 
  mssg = in.readLine(); 
 
  // Send the message   
  stm.sendMessage(gateway, deviceID, mssg, senderID); 
 
  // Get the response 
  stm.getResponse(); 
 
  // Prompt the user to see if he/she would like to check for a receipt  
  // for the previous message 
  //System.out.println( 

// "\n\nWould you like to check for a receipt? (Y or N):"); 
  // String receipt = in.readLine(); 
  // if(receipt.equals("Y")) { 
  //  stm.lookForReceipt(deviceID, senderID); 
  // } 
 } 
 catch(IOException e) { 
  System.out.println("Error reading device ID"); 
 } 
} 
} 
 

7.2  Client Getting a Delivery Confirmation 
This section builds on section 9.1 to add a ClientQuery to check for a receipt.  You will 
probably want to wait until your device receives a message for your initial test of the 
code. 
 
Near the end of the main() method in the class SendTestMessage, change the following 
lines of code: 



 18

 
// Prompt the user to see if he/she would like to check for a receipt  
// for the previous message 
//System.out.println( 
// "\n\nWould you like to check for a receipt? (Y or N):"); 
// String receipt = in.readLine(); 
// if(receipt.equals ("Y")) { 
//  stm.lookForReceipt(deviceID, senderID); 
// } 
 
To this: 
 
// Prompt the user to see if he/she would like to check for a receipt  
// for the previous message 
System.out.println( 
 "\n\nWould you like to check for a receipt? (Y or N):"); 
String receipt = in.readLine(); 
if(receipt.equals("Y")) { 

stm.lookForReceipt(deviceID, senderID); 
} 
 
Next, add this method into class SendTestMessage: 
 
/** 
 * This method checks to see if a message has been delivered. 
 */ 
private void lookForReceipt(String deviceID, String senderID) { 
 // Before the inital check for a receipt, pause to give the message 
 // a chance to get delivered 
 
   
 // Instantiate new instances of the WCTP Factory classes 
 clientRx = new WctpClientReceive(); 
 clientOps = new WctpClientOperations(); 
 
 // First, build a new Client Query 
 // Note that trackNo came from the getResponse method 
 String body = clientOps.clientQuery(deviceID, trackNo, senderID); 
 
 // Set up the URL 
 URL archWireless = null; 
 try { 
  archWireless = new URL("http://wctp.arch.com/wctp"); 
 } 
 catch (java.net.MalformedURLException mue) { 
  System.out.println("Unable to connect to specified URL"); 



 19

 } 
  
 // Create a new HttpURLConnection object to use for communication 
 // Note that this connection is reused later to get the response from the server 
 wctpConnection = clientOps.sendWctpPacket(archWireless, body); 
 
 // Now we will need to get a response from the server 
 String response = clientRx.readResponse(wctpConnection); 
 
 // This will parse the response for a type of DELIVERED 
 boolean delivered = clientRx.checkIfDelivered(response); 
 
 // Output the delivery status 
 if (delivered == true) { 
  System.out.println("\n\nMessage Delivered"); 
 } 
 else { 
  System.out.println("\n\nMessage Was Not Delivered"); 
 } 
} 

7.3  Enterprise Client Sending a MCR Message 
This application sends a MCR message to a device using an Enterprise message.  
Because the message is an enterprise request, a device ID can be set in the sender ID 
field.   
import java.net.HttpURLConnection; 
import java.net.URL; 
import java.io.*; 
 
import com.arch.wctp.*; 
 
/** 
 * This class sends an enterprise MCR message. 
 * Creation date: (8/2/2001 9:49:44 AM) 
 */ 
class SendMCR { 
 private HttpURLConnection wctpConnection = null; 
 private WctpEnterpriseOperations entOps = null; 
 private WctpClientReceive clientRx = null; 
 
 private String trackNo = null;   
/** 
 * This method is used to get a response from a WCTP server. 
 */ 
private void getResponse() { 
 // Instantiate the receive class 



 20

 clientRx = new WctpClientReceive(); 
 
 // Get back the success or failure response from the server 
 String response = clientRx.readResponse(wctpConnection); 
 
 // Parse the response for the success or failure code 
 int responseCode = clientRx.getResponseCode(response); 
 String codeText = clientRx.findCode(responseCode); 
 
 // Save the tracking number for future use 
 trackNo = clientRx.getTrackingCode(response); 
 
 // Output the three variables 
 System.out.println("The response code is: " + String.valueOf(responseCode)); 
 System.out.println("The response text is: " + codeText); 
 System.out.println("The tracking code is: " + trackNo); 
} 
/** 
 * This is the main method of the application. 
 */ 
public static void main(java.lang.String[] args) { 
 SendMCR smcr = new SendMCR(); 
 
 // These fields are needed for the WCTP packet 
 String deviceID = null; 
 String mssg  = null; 
 String gateway  = null; 
 String senderID = null; 
 String [] choices = new String[3]; 
 String sendResponsesToID = null; 
  
 try { 
  BufferedReader in = new BufferedReader( 

new InputStreamReader(System.in)); 
 
  // Get the gateway URL 
  System.out.println("\nEnter the gateway URL:"); 
  gateway = in.readLine(); 
 
  // Get the Device ID 
  System.out.println("\nEnter the Device ID:"); 
  deviceID =  in.readLine(); 
 
  // Get the Sender ID 
  // This will indicate where the MCR response should go 
  System.out.println("\nEnter the Sender ID:"); 



 21

  senderID =  in.readLine(); 
   
  // Get the Message Text 
  System.out.println("\nEnter the message text:"); 
  mssg = in.readLine(); 
 
  // Get MCR choice #1 
  System.out.println("\nEnter the first MCR:"); 
  choices[0] = in.readLine(); 
 
  // Get MCR choice #2 
  System.out.println("\nEnter the second MCR:"); 
  choices[1] = in.readLine(); 
   
  // Get MCR choice #3 
  System.out.println("\nEnter the third MCR:"); 
  choices[2] = in.readLine(); 
   
  // If a notification is desired, set the variable to an application URL  
  System.out.println( 

"\nWould you like a notification sent to an application? (Y or N)"); 
  String notify = in.readLine(); 
  if(notify.equals("Y")) { 
   System.out.println( 

"\nPlease indicate an application to send the response to"); 
   sendResponsesToID = in.readLine(); 
  } 
    
  // Send the message   
  smcr.sendMessage(gateway, deviceID, mssg, senderID, choices, 

sendResponsesToID); 
 
  // Get the response 
  smcr.getResponse(); 
 } 
 catch(IOException e) { 
  System.out.println("Error reading device ID"); 
 } 
} 
/** 
 * This method sends a Enterprise MCR message to a WCTP gateway. 
 */ 
private void sendMessage(String gateway, String deviceID, String message, String 
senderID,  
       String [] choices, String 
sendResponsesToID) { 



 22

 // Instantiate the EnterpriseOperations class 
 entOps = new WctpEnterpriseOperations(); 
  
 // Build the operation 
 String body = entOps.submitMcrRequest(deviceID, "Arch87965Q", senderID, 

 message, choices, sendResponsesToID); 
 System.out.println(body); 
  
 // Set up the URL 
 URL archWireless = null; 
 try { 
  archWireless = new URL(gateway); 
 } 
 catch (java.net.MalformedURLException mue) { 
  System.out.println("Unable to connect to specified URL"); 
 } 
  
 // Create a new HttpURLConnection object to use for communication 
 // Note that this connection is reused in the getResponse() method 
 wctpConnection = entOps.sendWctpPacket(archWireless, body); 
} 
} 

7.4  Device Originated Message to an Application 
In this example, a device application sends the string “Hello WCTP Application” to an  
application at http://localhost:80/ExampleDatabaseApp.  Please note: the actual 
construction of device applications is well beyond the scope of this manual.  Our servlet 
will capture the WCTP payload and write the string to an HTML page that we can view 
on the web.  The servlet also sends a message to a device to identify to a remote user that 
a Status Update has been received. 
 
package net.wctp.proxy; 
 
import java.io.*; 
 
import javax.servlet.*; 
import javax.servlet.http.*; 
 
import com.arch.wctp.*; 
 
import java.net.*; 
 
/** 
 * This class is a servlet that gets a POST from a WCTP server. 
 * The input is checked to see if a message is delivered. 
 * Creation date: (8/1/2001 3:04:22 PM) 



 23

 */ 
public class WctpPageBuilder extends HttpServlet { 
 private WctpEnterpriseOperations entOps = null; 
/** 
 * This method handles the HTTP post from the WCTP server 
 * @param req the HTTP request 
 * @param res the HTTP response 
 * @exception ServletException 
 * @exception java.io.IOException 
 */ 
public void doPost(HttpServletRequest req, HttpServletResponse res) throws 
ServletException, IOException { 
 res.setContentType("text/xml"); 
 PrintWriter out = res.getWriter(); 
 
 entOps = new WctpEnterpriseOperations(); 
 
 // Parse the XML packet 
 StringBuffer inputXML = null; 
 try { 
  BufferedReader in = new BufferedReader(new InputStreamReader 

((InputStream)req.getInputStream())); 
   inputXML = new StringBuffer(); 
    String input = null; 
    while ( (input = in.readLine()) != null) { 
     inputXML.append(input); 
     } 
  in.close(); 
 
  // return a success response 
  out.println(entOps.failure("200", "Success", "Status Info Recieved")); 
 
  // Send a confirmation page back to a device 
  sendMessage(); 
 } 
 catch(Exception e) { 
  // Give a generic error 
  out.println(entOps.failure("301", "Parse Error",  

"There was an error while parsing the XML")); 
 } 
 
 
 // Find the payload.  This example is designed for a simple example. 
 // A better solution here would be to parse the input using Xerces 
 // or another XML parser. 
 String payload = getPayload(out, inputXML.toString()); 



 24

 
 // Write the output to a file 
 outputHTML(payload); 
} 
 
/** 
 * This method strips out the payload from a body of text. 
 * This method is "quick n dirty" to reduce the size of the 
 * source code.  A better solution would be to use an XML parser 
 * to parse the data. 
 * @param inputXML the XML received by the gateway 
 * @return java.lang.String 
 */ 
private String getPayload(PrintWriter out, String inputXML) { 
 String payload = null; 
 try { 
  int i = inputXML.indexOf("<wctp-Alphanumeric>"); 
  int j = inputXML.indexOf("</wctp-Alphanumeric>"); 
  if (i != -1) { 
    payload = inputXML.substring(i+19, j); 
  } 
 } 
 catch (StringIndexOutOfBoundsException e) { 
   System.out.println("Nothing Received?"); 
   // Give a generic error 
   out.println(entOps.failure("301", "Parse Error",  

"There was an error while parsing the XML")); 
 } 
 finally { 
  return payload; 
 } 
} 
 
/** 
 * This method writes the output to a file used by a webserver. 
 * @param out the PrintWriter object  
 * @param payload The payload received from  
 */ 
private void outputHTML(String payload) { 
 try { 
  File outputFile = new File("/var/apache/htdocs/WctpOutput.html"); 
   FileWriter out = new FileWriter(outputFile); 
 
   out.write("<html><body>" + payload + "</body></html>"); 
     
  out.close(); 



 25

 } 
 catch (IOException e) { 
  System.out.println("Error writing file: " + e ); 
 } 
} 
 
 
/** 
 * This method sends a message to a pager. 
 */ 
private void sendMessage() { 
 // Instantiate the ClientOperations class 
 WctpEnterpriseOperations entOps = new WctpEnterpriseOperations(); 
  
 // Set up the URL 
 URL archWireless = null; 
 try { 
  archWireless = new URL("http://wctp.arch.com/wctp"); 
 } 
 catch (java.net.MalformedURLException mue) { 
  System.out.println("Unable to connect to specified URL"); 
 } 
  
 // Build the operation 
 String body = entOps.submitRequest("INSERT_DEVICEID",  

"WctpPageBuilder received a post from WCTP",  
"INSERT_EMAIL", null, "TestMessageID-1234");  

 
 // Create a new HttpURLConnection object to use for communication 
 // Note that this connection is reused in the getResponse() method 
 HttpURLConnection wctpConnection = entOps.sendWctpPacket( 

archWireless, body); 
 
 // Read the response from the server (This also closes the response) 
 // For simplicity, the response will not be parsed.  We just assume that the  

// message was sent. 
 String response = entOps.readResponse(wctpConnection);  
} 
} 



 26

8  Example Enterprise Application Framework 
The following is an example of a proxy model that is currently being used in some 
enterprises to route WCTP traffic to the Arch gateway.  A limited functionality reference 
implementation is provided on the CD included with this manual. 

8.1  Proxy Model 

Ethernet

WCTP Server (Carrier)

WCTP Proxy

Internet

Standard ClientStandard Client

Standard Client

Standard Client

Standard Client

C
lient M

essage

C
lie

nt
R

es
po

ns
e

Submit Request

Message Reply

Unclaimed
Receipts

 
Figure 8-1 Client Message to Enterprise Request 

The proxy receives a message from a transient client and creates a wctp-SubmitRequest 
packet that is sent to the WCTP Server.  The senderID and messageID fields are 
transposed from the wctp-ClientMessage packet to the wctp-SubmitRequest packet.  The 
WCTP Server responds with a wctp-MessageReply packet.  The proxy receives the reply 
and generates the appropriate message to the transient client.  Figure 10-1 shows transient 
client on a LAN generating wctp-ClientMessage packets to a proxy.   
 

Ethernet

WCTP Proxy

Standard ClientStandard Client

Standard Client

Standard Client

Standard Client

Client Message

Client
Response Unclaimed

Receipts

 
Figure 8-2 Client Queries 



 27

A transient client queries the proxy using the wctp-ClientQuery operation.  The proxy 
checks its database and responds with a wctp-ClientQueryResponse packet.  The proxy 
stores all client query requests as undelivered receipts until a receipt has been provided or 
until it expires due to time limits.  Figure 10-2 shows transient client on a LAN 
generating wctp-ClientQuery packets to a proxy.   

8.2  Push Based Model 

 

WCTP Proxy

InternetPushed Receipts
(HTTP 1.0)

Unclaimed
Receipts

WCTP Server (Carrier)  
Figure 8-3 Proxy Receiving Pushed Responses 

The preferred model for a proxy to obtain receipts from a WCTP Server is through a push 
mechanism.  The proxy simply listens on a port for receipts being posted to that port 
using the HTTP protocol.  The proxy updates records in the database with delivery 
confirmations at the time when receipts are received. 

8.3  Central Database for the Proxy 
Database wctp_receipts 

receipts_mst   
PK  FK   

char(50) char(50) char(256) int char(256) Char(19) 
track_no message_id sender_id notification recipient_id timestamp 

1234.23xz 1234.23xzArch randy@arch.com 1 1234567 2000-03-1T19:45:00 
1234.239z 1234.239zArch joe@arch.com 2 7654321 2000-03-1T19:45:10 
1234.982z 1234.982zArch sue@arch.com 3 5545545 2000-03-1T19:46:22 

    

notification_mst   
PK     
int char(10)   

type descr   
1 Queued   
2 Delivered   
3 Read   
4 Unknown   

Table 1: Database Definition 

Table 1 shows an example of a database structure used in the proxy model. 
 



 28

8.3.1  Inserting a Receipt 
At the time that the proxy receives a response from the WCTP server the proxy detects if 
the transient client has requested a receipt and, if so, inserts a new record into the 
database.  A unique key is generated that is duplicated and appended with the enterprise’s 
name.  The initial notification type is set as “Unknown.”   
 
If the response was a failure, an entry is not made in the database.  After that point, the 
client will receive a failure or success response from the proxy based on the response 
from the server. 

8.3.2  Querying a Receipt 
A receipt is queried in the database when a transient client performs a wctp-ClientQuery.   

8.3.3  Updating a Receipt 
A receipt is updated in the database when new status updates are received from the 
WCTP server.  This happens when a wctp-StatusInfo operation is pushed to the proxy 
servlet. 

8.3.4  Purging the Database 
The database can be purged at the discretion of the proxy administrator.  The carrier, 
however, is likely to have a predefined set of rules on how long they will continue to try 
to deliver a message.  For example, the carrier may give up on a delivery confirmation 
after 72 hours.   If the proxy does not purge the database periodically, the database could 
experience problems due to an unexpectedly fast growing table. 

8.4  Using a Proxy in the Enterprise 

8.4.1  Distributed Applications 
The proxy model offers a way to distribute client applications in the enterprise to allow 
for easy updates and increased control over wireless traffic.  Because the applications are 
communicating over XML, the clients are entirely platform independent.  The client may 
be a Visual Basic application, web-based application, or any other language that has the 
ability to communicate using sockets.  This model allows ultimate flexibility in 
controlling the flow of wireless traffic and monitoring the content of the traffic. 

8.4.2  Access Control 
One possibility for a proxy is to restrict access to a group of device ID’s or to limit the 
amount of characters that may be sent in a single page.  A proxy may also be set up to 
limit the amount of pages that a particular sender may send in a day.  Let’s take an 
example scenario to look at how these ideas may be used in a real-world application.  
Widgets Inc. has 50 employees that carry two-way wireless devices.  10 of those 
employees are management and need to have unlimited use of the device.  So, the proxy 
administrator sets up a group that is allowed to send 100 messages per day with 500 
characters per message to any valid device ID for the management managers.  
 



 29

A second group is set up for five employees who dispatch information to field 
technicians.  They also have a need to send one-hundred messages per day, but they only 
need the ability to send to twenty field technicians and five managers.  The proxy 
administrator constructs a second group for the dispatchers.   A third group is set up fo r 
20 field technicians.  This group is restricted to fifty messages per day and they can only 
be sent to dispatchers.  Of course, this is only a simple example.  The possibilities for 
similar applications are endless. 

8.4.3  Logging 
Another possibility with a proxy is to add the ability to log the content of messages.  The 
incoming XML can be written to a file to be later reviewed.  The file may be written in a 
format that lends itself to reporting software. 
 



 30

9  Where to Find the Protocol 
The protocol can be found at http://www.wctp.org/download.html.  Read and agree to the 
terms and conditions.  Two main documents are available.  The main protocol 
specification defines the protocol.  A use case companion is also at this site that provides 
XML use case examples of WCTP. 
 



 31

10  Commercial Software 
 
The following companies are known to produce software that uses WCTP. 
 

Company URL 

InfoRad, Inc. http://www.inforad.com 

OnWOW, Inc. http://www.2bpaged.com/ 

SilverLake 
Communications 

http://www.silverlake2000.com/productinfo/airsourceweb.ht
m 

Telamon http://www.telamon.com/ 



 32

11  Available API’s 
The following is a list of known API’s for WCTP: 
 

API Language URL 

Arch Wireless WCTP Factory Java, C++ http://content.arch.com/developer 

Using WCTP to send XML 
Forms over HTTP 

Python http://sourceforge.net/projects/wctpxml-
python 

WctpXML (WCTP Toolkit) C++ http://freshmeat.net/projects/wctpxml/ 

g-page C http://sourceforge.net/projects/g-page/ 



 33

12  What’s included on the CD? 
The following Arch Wireless APIs: 

?? WCTP API for Java 
?? WCTP API and for C++ (RedHat Linux 6.2 Binaries) 
?? WCTP ActiveX Control 

 
The following sample applications and documentation: 

?? Arch Wireless Sample Enterprise Application 
?? Arch Wireless Proxy Servlet for the Servlet 2.1 API 
?? Timeport P935 Binary Test Application w/ Source Code 
?? All source code presented in this manual. 
?? This manual in PDF format. 


