WCTP DevelopersGuide
Arch Wireess I mplementation

yon

wireless

Table of Contents

g wWNE

9

10
11
12

ADOUL ATCH WITEIESS.......coceieceiece ettt e et e e nne e e 1
INtrOAUCTION 1O WICT P ...ttt 3
Naming Conventions Used inthisManual ... 4
Common Mistakes in HTTP and XML With WCTPc.cocovieieiereee e 5
WECTP OPEIELIONS.eeieeeieetiesieeieseesieeeeseesteseesseessesseesseessssseesseesseeseesseensesssessesnsenns 6
51 Standard WCTP OPEratioNS.........coiveeiuieiieeiieeseeeieeseesteesiesssseessnssseessesssesssees 6
511 SUDMIit CHENE MESSAOE ...t 6
51.2 (O TT= 01 O 1 = S 7
52 EnterpriSe WCTP OPErationS.......cceeiuiieeiecie et esie e st este e s see e ense e snas 9
521 SUDMIT REQUESE ...t 9
522 POl FOr MESSAgES ...ttt 11
523 SEALUS INFO e 11
TG TV £ Lo o112 o TP URTR 12
531 TOKENS ...t nr e nnn 12
53.2 VEISION QUETYveeeeeieeesieeteeteesteeee st e saeeeesseesteetesseesseesesneesseensessensseensenns 12
MeSSagiNG CONVENTIONSeecveeiiieiieeiee et sieesre et e e st s sre e b e ssseesseessreesreesnseenseeas 14
6.1 MeSSagiNG 0 DEVICEScooiiiiiiiieeieseeiee e 14
6.2 Messaging to APPliCALIONS..........cceeiieeieiiere et 14
6.3 Messaging to Applications from aDeVICe..........ccccveveveeieece e 14
Examples of Common APPlICAHIONScocvieeiiriiieerieeeeee e 15
7.1 Client Sending aMESSAEocueiiriereeieee ettt 15
7.2 Client Getting a Delivery Confirmation...........ccccevveveieeseeiesieeseese e 17
7.3 Enterprise Client Sending aMCR MESSAJE.......cccevirirrienierienieniee e 19
7.4 Device Originated Message to an AppliCation...........ccoceevveiereneneneneseeeees 22
Example Enterprise Application Framework............cceivevereerieeceseese e seese e 26
8.1 PrOXY MOGEL.... oo e e 26
8.2 PUSh Based MOGEL.........ccooiiiieeeseee e 27
8.3 Central Database fOr the ProXYcccccvieeiieiecie e 27
831 INSErtiNg @RECEIPL ...c.veeeeeeeceee e e 28
8.3.2 QUENYING 8 RECEIPL.....cc.eiiieieeeeeee et 28
8.3.3 Updating @ RECAIPL.......cieiieeeieeee e 28
8.34 Purging the Databaseccceeeeieee e 28
8.4 Using aProxy iNthe ENEIPriSecceeierieieereeestee e 28
84.1 Distributed APPlICALIONScoveeeieieriesierieeee e 28
8.4.2 ACCESS CONLIOL ...ttt 28
8.4.3 [0 o o RSSO 29
Where to Find the ProtoCOlooeiiieiiieceeeeee s 30
ComMMENCIal SOTIWEAIE ...t 31
AVAIHEDIE API S ...t 32
What'sincluded 0N the CD? ... 33

1 About Arch Wireless

Arch Wireless™ is L eading the Way in Wireless Communications

Arch Wireless Inc. is the premier provider of end-to-end wireless enterprise
solutions, wireless e-mail, instant text messaging and mobile Internet access. We
offer a broad range of wireless data solutions to companies looking to gain a
competitive advantage by enhancing productivity as well as to individuals who
want to make their daily onthe-go lives easier and more manageable.

Arch Wireless has more than 250 offices and company stores across the U.S,,
serving millions of individuals and hundreds of Fortune 1000 and smaller
companies. Our expert consultants are ready to work directly with businesses of
all sizesto help create and integrate a custom wireless data solution into their
existing infrastructure.

All of Arch Wireless innovative, interactive solutions take advantage of the
powerful Arch Wireless data network—the most robust and reliable of itskind in
North America. With superior coverage throughout all 50 states, D.C., Canada,
the Caribbean, Mexico and Puerto Rico, Arch customers get the information that's
needed most—from virtually anywhere business or life takes them.

The Arch Wireless Network Delivers

The Arch Wireless Network uses the highly efficient ReFLEX® 25 digita point-
to-multipoint platform and offers higher signal strength, in-building penetration,
and far greater landmass and population coverage of cellular, PCS, and wireless
broadband combined. Today the Arch Network can provide coverage to more
than 93% of the U.S. population. With ongoing enhancements, our network will
be providing subscribers with superior two-way wireless data services for years to
come.

The Benefits of Arch Wireless Are Clear

22 Ubiquity - Archs network provides unmatched coverage in all 50 states,
DC, Canada, Mexico, and the Caribbean.

2? Réliability - The strength of the signal delivered over the Arch Wireless
network assures a higher quality transmission and substantially greater
assurance of message recei pt—indoors and out.

?? Bandwidth— Arch has extensive spectrum assets, positioning us to
effectively handle the growth and capacity in two-way wireless
communication.

2? Customization- To create the perfect wireless data solution tailored to
your specific needs, Arch Wireless expert consultants work directly
with your organization every step of the way.

?? Integration- Arch Wireless uses a open standard connection protocols,
making our services easy to integrate and expand upon as your needs
grow.

Our Management Team

C. Edward Baker, Jr., Chairman and Chief Executive Officer

Lyndon R. Daniels, President and Chief Operating Officer

Steven C. Gross, Executive Vice President, Sales and Marketing

Paul H. Kuzia, Executive Vice President, Technology ard Regulatory Affairs
J. Roy Pottle, Executive Vice President and Chief Financial Officer

John B. Saynor, Executive Vice President, Corporate Devel opment

Peter Barnett, Senior Vice President, Operations, and Chief Information Officer
Patricia A. Gray, Senior Vice President and General Counsel

Christopher J. Madden, Senior Vice President, Human Resources

Mark L. Witsaman, Senior Vice President, Technology, and Chief Technology
Officer

Gerald J. Cimmino, Vice President and Treasurer

George W. Hale, Vice President, Finance and Controller

Robert W. Lougee, Jr., Vice President, Corporate Communications and Investor
Relations

Our Corporate Headquarters
1800 West Park Drive, Suite 250
Westborough, MA, 01581
Phone: 508-870-6700

Fax: 508-836-3626

2 Introduction to WCTP

WCTP (Wireless Communications Transport Protocol) is based on XML 1.0 and is
currently maintained by the Personal Communications Industry Association (PCIA.)
WCTP was originaly ajoint project between a wireless carrier, some manufacturers, and
an ASP. WCTP was given to the PCIA as a proposa for atwo-way protocol to support
the newly deployed networks. All of the member carriers of PCIA adopted WCTP as the
officia two-way wireless messaging protocol. The existing version of the protocol was
renamed 1.0 and adopted. After a couple of carriers implemented the protocol a working
group was formed to enhance WCTP. WCTP 1.1 was recently released, and 1.2 and 2.0
versions are currently under development. Inthe 1.1 version of the protocol versioning
was introduced. It is not efficient to query version information every time a connection
to aserver ismade. A mechanism was introduced to alow atoken to exist in the
response document for every transaction. This token could then be compared with the
previoudly stored token to determine if any changes had taken place with the current
implementation. If change had occurred, then a Version Query would be appropriate.
One of the additional requested feature sets for 2.0 is SMS functionality. The 1.2 version
will clear up inconsistencies in the protocol and improve the readability of the document.

WCTP is not designed for a given wireless protocol, and bi-directional communications
are supported. The transport model for the protocol is request/response oriented. Every
WCTP document that is delivered will receive aWCTP document asitsreply. This
could either be a success or failure notification.

The protocol is device and platform independent. In fact, many devices do not have any
native support for WCTP. Currently, the WCTP protocol is used to access are either
pagers or PDA’s. These could be anything from numeric one-way to two-way pagers and
PDA’ s with wireless connectivity. WCTP has aready been used to deliver messages to
devices that operate on Flex, ReFlex, and Mobitex. Thereisaso a SMS gateway that has
the capability to trandate WCTP requests.

3 Naming Conventions Used in this Manual

WCTP Server

Recepts

Transient Client

Enterprise Client

Enterprise

Application

Device ID

The term WCTP server is used to identify a WCTP gateway at
the carrier. In other words, thisis the final destination for the
WCTP communication before it reaches the device.

A receipt is aconfirmation of delivery.

A transient client talks to a WCTP server but does not have a
permanent ‘home.” A transient client may later go back to
check for receipts and device replies using a Client Query, but
adeviceis not ableto reply to atransient client message. A
transient client also can’t have receipts posted back to it. A
transient client uses the Submit Client Message operation to
send WCTP messages.

An enterprise client picks up where atransient client leaves
off. A device can reply to messages sent by an enterprise
client. An enterprise client can also specify an application for
replies and receipts to be posted to.

An enterprise application is an application that lives on the
internet that a WCTP server posts operationsto. The WCTP
server may post receipts or replies to the enterprise
application.

A device ID isthe number that is assigned to the device by
your carrier.

4 Common Mistakes in HTTP and XML with WCTP

WCTP currently has only one implemented transport model. Thisisbased on HTTP.
HTTP has severa headers that are important to the functionality of WCTP. The most
common area of mistake is the Content-Length field. 1f you do not have the correct value
in thisfield, it islikely that you will receive aWCTP 301 Parse Error. An assumption is
also made about the nature of HTTP 1.1. No reference implementation currently existsto
allow transaction chaining viaHTTP 1.1. If HTTP 1.1 is used, you should expect to see
the Connection-Closed directive after receiving a response from the remote WCTP
server. Problems have also been discovered in using the same I P address for multiple
web sites. The naming convention of http://wctp.xxx.xxx/wctp is intended to alow for
shorter addresses with over the air protocols. Y ou may need to diagnose the
configuration of your HTTP server to ensure that no problems arise from this convention.

Other modes of transport are possible, but have not been tested, and not al operationsin
WCTP lend themselves to asynchronous transfer. It is expected that at some point in the
future araw port will be assigned for WCTP communications that does not require the
construction and destruction of an HT TP connection.

Another common problem arises from the nature of CDATA in XML. It is necessary to
escape XML entities:

> &qat;
< <
& &
? &quoat;
‘ & apos,

If you want a message to display one of these characters on the device, you need to
replace them with their escaped values.

WCTP is an example of XML, and aDTD is the current document used to ensure that
WCTP is not only well formed, but valid. The URI for the DTD you are using must be
one that can be resolved by both participants in WCTP communications. Some parsers
have aso been found to attempt to request a DTD from a remote source even when this
feature is disabled.

WCTP gains most of its power and ssimplicity by leveraging the existing standards of
HTTP and XML. This does not provide complete functional abstraction for all
implementations, so be sure that you are truly familiar with HTTP and XML before
assuming that the remote system you are communicating with is flawed. At least, be sure
that you have a copy of the current RFC/Specification from http://www.ietf.org/ or
http://www.w3.org/ .

5 WCTP Operations

For the purpose of this manual, all WCTP operations have been divided into two
categories. Standard operations are used by transient clients. Enterprise operations are
used by both enterprise clients and enterprise applications. Versioning is a special kind
of operation that is explained later in this chapter.

5.1 Standard WCTP Operations

5.1.1 Submit Client Message

_"»

@Hﬂg

Crevice

SubmiC lizn,
SubmiC lient Mazsage R
—_—

Wasrage Internet vedi

PAL (B Lt

apaodsay
W(_':TP JLE [Ba [l Ts] =)
Client

WWCTR Server
Radio Tower

A WCTP Submit Client Message is the most basic form of a WCTP operation. A
transient client may obtain receipts and device replies using the Client Query operation.
A transient client may not route replies to another device. A transient client formats a
packet and submits it to a WCTP server. The server checks for any immediate error
conditions (such as bad XML or an invalid subscriber) and responds with either a success
or failure packet. Required parameters include a sender ID and arecipient ID.

Frequently used optional parameters include setting a message as preformatted, including
atimestamp, and requesting a confirmation of delivery. The following are some brief
definitions of commonly used parametersin aWCTP Client Message:

senderID Required field used to identify the sender. Thisis not awell-
defined field for transient clients and is expected to be
deprecated in the future.

recipientlD Used to identify the device ID that you are sending the message
to.
notifyWhenQueued This lets the server know that you will want to know when the

message has been queued to be sent to the device.

notifyWhenDelivered | This lets the server know that you will want to know when the
message has been sent to the device.

preformatted This lets the server know to preserve white space and carriage
returns in the payload. The user should be made aware that the
white space and carriage retur ns may be counted as billed
characters.

submitTimestamp The timestamp indicates the time that the message was sent in
GMT.

The following XML is a WCTP Submit Client M essage packet:

<IDOCTY PE wctp-Operation SY STEM "http://dtd.wctp.org/wctp-dtd-v1rl.dtd"™>
<wctp-Operation wctpV ersion="wctp-dtd-virl">
<wctp-SubmitClientM essage>
<wctp-SubmitClientHeader submitTimestamp="2001-07-31T17:56:05">
<wectp-ClientOriginator senderl D="sender @arch.com'/>
<wctp-ClientM essageControl
notifyWhenQueued="true"
notifyWhenDelivered="true"
notifyWhenRead="fal se"
>
<wctp-Recipient recipientlD="DEVICEID @arch.com” />
</wctp- SubmitClientHeader>
<wctp- Payload>
<wctp-Alphanumeric>test</wctp- Alphanumeric>
</wctp-Payload>
</wctp- SubmitClientM essage>
</wctp-Operation>

The following XML is aresponse from a WCTP server for a valid message.

<?ml version="1.0"?>
<IDOCTY PE wctp-Operation SYSTEM "http://dtd.wctp.org/wctp-dtd-v1rl.dtd">
<wctp-Operation wctpV ersion="wctp-dtd-v1rl" wctpToken="11AA">
<wctp-SubmitClientResponse>

<wectp-ClientSuccess

successCode="200"

successText="Accepted"

trackingNumber="0004997072"

>

Y our message for DEVICEID @arch.com has been accepted for delivery.
</wctp-ClientSuccess>
</wctp- SubmitClientResponse>

</wctp-Operation>

5.1.2 Client Query

i _ lizrtDuzng
i ClisiOuery Internet —]
apodzay

LE Y LE

: WCTE aptodgay
LE=tETE!
Client

WC'i'F' Se.nfe
A Client Query is sent by atransient client to a WCTP server. The client must first send
aWCTP Client Message that specifies notification upon delivery. The server will

respond with atracking number. The tracking number is then used to obtain delivery
status (either QUEUED or DELIVERED) and device replies. The required parameters
for aWCTP Client Query are asender ID, recipient ID, and tracking number. The
following table describes these fields in more detail:

senderlD The senderID that was indicated in the original message. Typically,
thisfield is used by a WCTP server to key on a database.
recipient!D The recipientI D that isindicated in the original message. Typically,

this field is used by aWCTP server to key on a database.

TrackingNumber The tracking number that was returned by the WCTP server when
the message was originally sent.

The following XML shows a Client Query operation:

<?ml version="1.0"?>
<IDOCTY PE wctp-Operation SY STEM "http://dtd.wctp.org/wctp-dtd-v1rl.dtd">
<wctp-Operation wctpV ersion="wctp-dtd-v1rl">
<wctp-ClientQuery
senderI D="sender @arch.com"
recipientl D="DEVICEID @arch.com "
trackingNumber="0004997072"
/>
</wctp-Operation>

The following shows the XML response from a WCTP server reporting the message is
QUEUED, but not DELIVERED:

<?ml verson="1.0"?>
<IDOCTY PE wctp-Operation SY STEM
"http://www.pcia.com/wireres/protocol/dtd/wctpv1-0.dtd">
<wctp-Operation wctpVersion="wctp-dtd-virl” wctpToken="11AA">
<wectp-ClientQueryResponse>
<wctp-ClientM essage>
<wectp-ClientStatusl nfo>
<wectp-ClientResponseHeader>
<wectp-Originator senderl D="sender@arch.com " />
<wctp-Recipient recipientlD="DEVICEID @arch.com " />
</wctp-ClientResponseHeader>
<wctp-Notification type="QUEUED" />
</wctp-ClientStatusinfo>
</wctp-ClientM essage>
</wctp-ClientQueryResponse>
</wctp-Operation>

The following XML shows the response from a WCTP server reporting the message is
DELIVERED:

<?xml version="1.0"?>
<IDOCTY PE wctp-Operation SY STEM
"http://www.pcia.com/wireres/protocol/dtd/wctpv1-0.dtd">
<wctp-Operation wctpV ersion="wctp-dtd-v1rl” wctpToken="11AA">
<wctp-ClientQueryResponse>
<wctp-ClientM essage>
<wctp-ClientStatusinfo>
<wectp-ClientResponseHeader>
<wctp-Originator senderlD=" sender@arch.com” />
<wctp-Recipient recipientlD="DEVICEID@arch.com " />
</wctp-ClientResponseHeader>
<wectp-Noatification type="QUEUED" />
</wctp-ClientStatusinfo>
</wctp-ClientM essage>
<wectp-ClientM essage>
<wectp-ClientStatusl nfo>
<wctp-ClientResponseHeader>
<wctp-Originator senderlD=" sender@arch.com” />
<wctp-Recipient recipientlD="DEVICEID@arch.com " />
</wctp-ClientResponseHeader>
<wctp-Notification type="DELIVERED" />
</wctp-ClientStatusinfo>
</wctp-ClientM essage>
</wctp-ClientQueryResponse>
</wctp-Operation>

5.2 Enterprise WCTP Operations
5.2.1 Submit Request

_"»

Submi

Submi. Faquasl REHE}{ »
Faquas Internet J'ql—dau
abessa
WCTR a{il'ejj::z%n ! e
Client Device
WWCTP Server

Radio Tower
A WCTP Submit Request is an enterprise message that is sent to the gateway. The
Submit Request operation offers increased functionality to over the Submit Client
Message operaton. Most notably, a Submit Request uses the sender ID field to indicate
where a device should respond. Possible destinations include another device or an
application. An enterprise client will format a Submit Request operation and submit it to
aWCTP server. The server parses the XML for any immediate error conditions such as
an invalid subscriber or invalid XML. Either a success or failure is returned to the
enterprise client. Required fields for a Submit Request are a sender 1D, message ID, and

recipient ID. Frequently used fields include submitTimestamp, sendResponsesTolD,
notifyWhenQueued, notifyWhenDelivered, and preformatted. The following are some
brief definitions of commonly used parameters in a WCTP Submit Request:

senderID Thisfield indicates where to send responsesto. Thismay be a
device ID or the URL of an enterprise application.

messagel D This field should uniquely identify the message.

recipientlD Used to identify the device ID that you are sending the

message to.

submitTimestamp

The timestamp indicates the time that the message was sent in
GMT.

sendResponsesTol D

Thisfield can be used to specify an application where you
want any device responses or receipts sent to.

notifyWhenQueued

This lets the server know that you will want to know when the
message has been queued.

notifyWhenDelivered

This lets the server know that you will want to know when the
message has been delivered to the device.

preformatted

This lets the server know to preserve white space and carriage
returnsin the payload. The user should be made aware that
the white space and carriage returns may be counted as billed
characters.

The following XML shows a Submit Request operation:

<?Xxml verson="1.0"?>

<IDOCTY PE wctp-Operation SY STEM "http://dtd.wctp.org/wctp-dtd-v1rl.dtd'>
<wctp-Operation wctpV ersion="wctp-dtd-virl">

<wctp-SubmitRequest>
<wctp- SubmitHeader

submitTimestamp="2001-07-31T18:49:06"

>
<wctp-Originator

sender D="M SG:fakei d@f akeserver.com:8080/fakeApplication”

/>
<wctp-MessageControl

allowResponse="true"
messagel D="7443axp"
notifyWhenDelivered="true"
notifyWhenQueued="true"
notifyWhenRead="fal se"

/>
<wctp-Recipient

recipientl D="DEVICEID @arch.com"

/>
</wctp-SubmitHeader>
<wctp-Payload>

10

<wctp-Alphanumeric>test</wctp- Al phanumeric>
</wctp-Payload>

</wctp- SubmitRequest>

</wctp-Operation>

The following XML shows a response from a WCTP server showing athat the message
was accepted.

<?ml verson="1.0"?>
<IDOCTY PE wctp-Operation SY STEM
"http://www.pcia.com/wireres/protocol/dtd/wctpv1-0.dtd">
<wctp-Operation wctpV ersion="wctp-dtd-v1rl” wctpToken="11AA">
<wectp-Confirmation>
<wctp-Success successCode="200" successText="Accepted">
Y our message for DEVICEID @arch.com has been accepted for delivery.
</wctp- Success>
</wctp-Confirmation>
</wctp-Operation>

5.2.2 Poll For Messages

PallFar
FallFar Mavzager
1] Intarnet B
i apnodsay

liod

WWOTPE apnodgay
Client

WC'i'P Se.nre
The WCTP Poll For Messages operation is used by an enterprise application to pull

receipts or device replies from a WCTP server. However, the preferred method for
obtaining receipts is to have the receipts and device responses pushed to an enterprise

application.

5.2.3 Status Info

I=
o
-

ol

B

ar

Submi.
Submi Raquesl [—1]
] Faques Internet K e
e e

Aday abezsani
W;TP abessan
Client

Shtus
Infa
WELILNGD

[rewice

WZTP Server
Radio Tower

11

In current implementations, the WCTP Status Info operation is most commonly used by a
WCTP server to post receipts and device originated replies to an enterprise application.
For example, an enterprise client has indicated that it wants to be notified when a
message has been delivered. The enterprise client has indicated to send receipts to an
enterprise application at http://someserver:8080/wctpReceipts. At some point, the WCTP
server knows that the message has been delivered so it posts a Status Info operation to
that URL with the notification type of DELIVERED. Similarly, if an enterprise
application indicates to send responses to the previous URL, the WCTP server will post
device replies to that address.

5.3 Versioning

The 1.1 revision of WCTP introduced the notion of versioning. Versioning alows a
WCTP server to keep standard and enterprise clients informed about the status of the
gateway. Two mechanisms are used for versioning in WCTP. Those mechanisms are
tokens and the Version Query operation.

5.3.1 Tokens

A token is used by aWCTP server (or possibly an enterprise application) to indicate to
clients that there has been a change in the gateway. While there are not currently any
specific conventions to define a token format, any change in the token should be enough
for the client to acknowledges changesin the server. Thisis done using aVersion Query
operation.

The following XML snippet shows where a version token is located:
<wctp-Operation wctpVersion="wctp-dtd-virl” wctpToken="11AA">
5.3.2 Version Query

i Warzian
‘arzian Ciuary

i Ciuary Internet _|-:-:I—
EEIT FETY] Bcdiey

WCTF han Mo
Cliant bl

WITE Serve

The Version Query operation is used to acquire information about a WCTP server. The
client can acquire the gateway version and alist of DTD’s currently supported by the
gateway. The required field for a Version Query isthe inquirer. To obtain alist of
DTD’sthe listDTDs option should be set to true. The following are some brief
definitions of useful fields in the Version Query operation:

inquirer Thisfield represents a URI that identifies the entity making the version
inquiry.

listDTDs Setting this option to ‘true’ indicates that you want a list of supported
DTDs.

The following XML shows a Version Query:

12

<?ml version="1.0"?>
<IDOCTY PE wctp-Operation SYSTEM "http://dtd.wctp.org/wctp-dtd-v1rl.dtd">
<wctp-Operation wctpV ersion="wctp-dtd-virl’>
<wctp-VersionQuery
inquirer="sender@arch.com"
dateTime="2001-07-31T18:53:33"
/>
</wctp-Operation>

<?ml verson="1.0"?>
<IDOCTY PE wctp-Operation SYSTEM " http://dtd.wctp.org/wctp-dtd-virl.did ">
<wctp-Operation wctpV ersion="wctp-dtd-virl” wctpToken="11AA">
<wctp-VersionResponse
responder="wctp.arch.com/wctp"
dateTimeOfRsp="2001-07-31T18:54:40"
inquirer="sender@arch.com"
dateTimeOfReg="2001-07-31T18:53:33"
>
<wctp-DTDSupport
dtdName="wctp-dtd-v1rl”
verToken="11AA"
supportType="Supported”
/>
<wctp-DTDSupport
dtdName="wctp-dtd-v1rQ”
supportType="Deprecated’
/>
</wctp-VersionResponse>
</wctp-Operation>

13

6 Messaging Conventions

6.1 Messaging to Devices

To message to a device use the ID that was assigned to the device by your carrier
followed by a carrier-specific domain. For example, if your device ID is 1234567, then
you use this in the senderID field:

senderl D="1234567@arch.com”

6.2 Messaging to Applications

To message to an enterprise application from a enterprise client you use the URL of your
application. Inthis example, let’s assume that you have an application at
http://somewhere:8080/yourApplication/. You would indicate to route responses to an
application in the Submit Request operation with the following:

sender| D="M SG:username@somewhere:8080/yourApplication”

Where the format is:

M SG:someid@-<server>:port#/application/

If aport is not specified, port 80 is assumed.

Note that “MSG:” is prepended to the URL. This indicates to the server that the

senderID is either an address or apoller ID. This manual does not cover polling, so we
will assume it isonly for enterprise applications at this point.

6.3 Messaging to Applications from a Device

To message to an enterpries application from a device you use the same conventions as
listed in section 8.2. The type of response should be set to ‘email’ on the device.

14

7 Examples of Common Applications

The following applications use the Arch Wireless WCTP Factory API for basic
functionality.

7.1 Client Sending a Message

In this example an application will be built that sends a Client message to a WCTP server
and receives a success or failure response. This application is non-graphical and must be
run fromDOS or a UNIX shell prompt.

import java.net.*;
import java.io.*;

import com.arch.wctp.*;

/**

* SendTestM essage

* This class is used to send a Submit Client Message to a WCTP gateway.
* Creation Date: 7-31-2001

*/

class SendTestMessage {
private HttpURL Connection wctpConnection = null;
private WctpClientOperations clientOps = null;
private WctpClientReceive clientRx = null;
private String trackNo = null;

/**

* This method sends a Client message to a WCTP gateway.

*/

private void sendM essage(String gateway, String devicel D, String message,
String senderID) {
/I Instantiate the ClientOperations class
clientOps = new WctpClientOperations();

// Build the operation
String body = clientOps.submitM essage(clientOps.get Timestamp(),
devicelD, message, senderiD, true);

/I Set up the URL
URL archWireless = null;

try {

}
catch (java.net. MaformedURL Exception mue) {

archWireless = new URL (gateway);

15

System.out.println("Unable to connect to specified URL");
}

/I Create a new HttpURL Connection object to use for communication
I/l Note that this connection is reused in the getResponse() method
wctpConnection = clientOps.sendW ctpPacket(archWireless, body);

}

/**

* This method is used to get a response from a WCTP server.
*/

private void getResponse() {

Il Instantiate the receive class
clientRx = new WctpClientReceive();

/I Get back the success or failure response from the server
String response = clientRx.readResponse(wctpConnection);

/I Parse the response for the success or failure code
int responseCode = clientRx.getResponseCode(response);
String codeText = clientRx.findCode(responseCode);

/I Save the tracking number for future use
trackNo = clientRx.getTrackingCode(response);

I/ Output the three variables

System.out.printIn(" The response codeis. " + String.valueOf (responseCode));
System.out.printin(" The response text is. " + codeText);
System.out.printin("The tracking code is: " + trackNo);

}

/**

* Thisis the main method of the application.

*/

public static void main(java.lang.String[] args) {
SendTestMessage stm = new SendTestM essage();

/I Prompt the user for the gateway information
String devicelD = null;

String mssg =null;

String gateway = null;

String senderID = null;

try {
BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));

16

/I Get the gateway URL
System.out.printin("\nEnter the gateway URL:");
gateway = in.readLine();

Il Get the Device ID
System.out.printin("\nEnter the Device ID:");
devicelD = in.readLine();

/] Get the Sender 1D
System.out.printin("\nEnter the Sender ID:");
senderlD = in.readLine();

/I Get the message text
System.out.println("\nEnter the message text:");
mssg = in.readLine();

Il Send the message
stm.sendM essage(gateway, devicel D, mssg, sender|D);

Il Get the response
stm.getResponse();

I/ Prompt the user to see if he/she would like to check for a receipt
/I for the previous message
//System.out.printin(
I "“\MnWould you like to check for areceipt? (Y or N):");
Il String receipt = in.readLine();
/I if(receipt.equals("Y")) {
I stm.lookForRecei pt(devicel D, senderID);
'}
}
catch(lOException €) {
System.out.printIn("Error reading device ID");
}

7.2 Client Getting a Delivery Confirmation

This section builds on section 9.1 to add a ClientQuery to check for areceipt. You will
probably want to wait until your device receives a message for your initia test of the
code.

Near the end of the main() method in the class SendTestMessage, change the following
lines of code:

17

/I Prompt the user to see if he/she would like to check for a receipt
/I for the previous message

[/System.out.println(

I "\MnWould you like to check for areceipt? (Y or N):");

/I String receipt = in.readLine();

/I if(receipt.equals("Y™")) {

Il stm.lookForReceipt(devicel D, senderID);

I}

To this:

/I Prompt the user to see if he/she would like to check for a receipt
/I for the previous message
System.out.printIn(

"\mnWould you like to check for areceipt? (Y or N):");
String receipt = in.readLing();
if(receipt.equals("Y")) {

stm.lookForRecei pt(devicel D, sender|D);
}

Next, add this method into class SendTestMessage:

/**

* This method checks to see if a message has been delivered.

*/

private void lookForReceipt(String devicel D, String senderID) {

I/l Before the inital check for areceipt, pause to give the message
/I achance to get delivered

/Il Instantiate new instances of the WCTP Factory classes
clientRx = new WctpClientReceive();
clientOps = new WctpClientOperations();

Il First, build anew Client Query
I/l Note that trackNo came from the getResponse method
String body = clientOps.clientQuery(devicel D, trackNo, senderID);

/I Set up the URL
URL archWireless = null;

try {

}
catch (java.net. MaformedURL Exception mue) {
System.out.printIn("Unable to connect to specified URL");

archWireless = new URL ("http://wctp.arch.com/wctp");

18

}

/I Create a new HttpURL Connection object to use for communication
/I Note that this connection is reused later to get the response from the server
wctpConnection = clientOps.sendW ctpPacket(archWireless, body);

/I Now we will need to get a response from the server
String response = clientRx.readResponse(wctpConnection);

/I Thiswill parse the response for atype of DELIVERED
boolean delivered = clientRx.checkIfDelivered(response);

// Output the delivery status

if (delivered == true) {
System.out.printin("\n\nMessage Delivered");

}

else{
System.out.printIn("\n\nM essage Was Not Delivered");
}

}

7.3 Enterprise Client Sending a MCR Message

This application sends a MCR message to a device using an Enterprise message.
Because the message is an enterprise request, a device ID can be set in the sender 1D
field.

import java.net.HttpURL Connection;

import java.net.URL ;

import java.io.*;

import com.arch.wctp.*;

/**

* This class sends an enterprise MCR message.
* Creation date: (8/2/2001 9:49:44 AM)

*/
class SendMCR {
private HttpURL Connection wctpConnection = null;
private WctpEnterpriseOperations entOps = null;
private WctpClientReceive clientRx = null;
private String trackNo = null;
/**
* This method is used to get a response from a WCTP server.
*/

private void getResponse() {
/I Instantiate the receive class

19

}

/**

clientRx = new WctpClientReceive();

/I Get back the success or failure response from the server
String response = clientRx.readResponse(wctpConnection);

/I Parse the response for the success or failure code
int responseCode = clientRx.getResponseCode(response);
String codeText = clientRx.findCode(responseCode);

/I Save the tracking number for future use
trackNo = clientRx.getTrackingCode(response);

I/ Output the three variables

System.out.printIn(" The response code is. " + String.valueOf(responseCode));
System.out.printin(" The response text is: " + codeText);
System.out.printin("The tracking code is: " + trackNo);

* Thisis the main method of the application.

*/

public static void main(java.lang.String[] args) {

SendMCR smcr = new SendM CR();

/I These fields are needed for the WCTP packet
String devicelD = null;

String mssg =null;

String gateway = null;

String sender|D = null;

String [] choices = new String[3];

String sendResponsesTolD = null;

try {
BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));

/I Get the gateway URL
System.out.printin("\nEnter the gateway URL:");
gateway = in.readLine();

Il Get the Device ID
System.out.printIn("\nEnter the Device ID:");
devicelD = in.readLine();

/I Get the Sender ID

/I This will indicate where the MCR response should go
System.out.printIn("\nEnter the Sender 1D:");

20

senderlD = in.readLing();

/I Get the Message Text
System.out.printin("\nEnter the message text:");
mssg = in.readLine();

Il Get MCR choice #1
System.out.printin("\nEnter the first MCR:");
choicegQ] = in.readLine();

Il Get MCR choice #2
System.out.println("\nEnter the second MCR:"),
choices[1] = in.readLine();

Il Get MCR choice #3
System.out.printin("\nEnter the third MCR:");
choiceq[2] = in.readLin&();

/I'1f anotification is desired, set the variable to an application URL
System.out.printIn(

"\nWould you like a notification sent to an application? (Y or N)");
String notify = in.readLine();
if(notify.equals("Y")) {

System.out.println(

"\nPlease indicate an application to send the response to");
sendResponsesTol D = in.readLine();

}

/I Send the message
smcr.sendM essage(gateway, devicel D, mssg, senderlD, choices,
sendResponsesT ol D);

Il Get the response
smcr.getResponse();

}
catch(IOException €) {

System.out.printIn("Error reading device ID");

* This method sends a Enterprise MCR message to a WCTP gateway.

private void sendM essage(String gateway, String devicel D, String message, String

String [] choices, String

sendResponsesTol D) {

21

}
}

7.4

Il Instantiate the EnterpriseOperations class
entOps = new WctpEnterpriseOperations();

// Build the operation

String body = entOps.submitM crRequest(devicel D, "Arch87965Q", senderID,
message, choices, sendResponsesTolD);

System.out.printin(body);

/I Set up the URL
URL archWireless = null;

try {

}
catch (java.net. MaformedURL Exception mue) {

System.out.printin("Unable to connect to specified URL");
}

/I Create a new HttpURL Connection object to use for communication
/I Note that this connection is reused in the getResponse() method
wctpConnection = entOps.sendW ctpPacket(archWirel ess, body);

archWireless = new URL (gateway);

Device Originated Message to an Application

In this example, a device application sends the string “Hello WCTP Application” to an
application at http://localhost:80/ExampleDatabaseApp. Please note: the actual

construction of device applications is well beyond the scope of this manual. Our servlet
will capture the WCTP payload and write the string to an HTML page that we can view

on the web. The servlet also sends a message to a device to identify to aremote user that

a Status Update has been received.

package net.wctp.proxy;

import java.io.*;

import javax.serviet.*;
import javax.servlet.http.*;

import com.arch.wctp.*;

import java.net.*;

/**

* Thisclassis aservlet that gets a POST from aWCTP server.
* The input is checked to see if a message is delivered.
* Creation date: (8/1/2001 3:04:22 PM)

22

*/
public class WctpPageBuilder extends HttpServlet {
private WctpEnterpriseOperations entOps = null;
/**
* This method handles the HTTP post from the WCTP server
* @param req the HTTP request
* @param res the HTTP response
* @exception ServletException
* @exception java.io.l OException
*/
public void doPost(HttpServietRequest req, HttpServletResponse res) throws
ServletException, |OException {
res.setContentType("'text/xml™);
PrintWriter out = res.getWriter();

entOps = new WctpEnterpriseOperations();

Il Parse the XML packet
StringBuffer inputXML = null;

try {
BufferedReader in = new BufferedReader(new InputStreamReader

((InputStream)req.getl nputStream()));
inputXML = new StringBuffer();
String input = null;
while ((input = in.readLing()) != null) {
inputX ML .append(input);
}

in.close();

I/ return a success response
out.println(entOps.failure("200", "Success’, "Status Info Recieved"));

/I Send a confirmation page back to a device
sendM essage();

catch(Exception €) {
/I Give a generic error
out.println(entOps.failure("301", "Parse Error",
"There was an error while parsing the XML"));

/l Find the payload. This exampleis designed for a smple example.
/I A better solution here would be to parse the input using Xerces

/I or another XML parser.

String payload = getPayload(out, inputXML.toString());

23

/I Write the output to afile
outputHTML (payload);

}

/**

* This method strips out the payload from a body of text.

* This method is "quick n dirty" to reduce the size of the

* source code. A better solution would be to use an XML parser

* to parse the data.

* @param inputXML the XML received by the gateway

* @return java.lang.String

*/

private String getPayload(PrintWriter out, String inputXML) {
String payload = null;

try {
int i = inputXML.indexOf("<wctp-Alphanumeric>");
int j = inputXML.indexOf (" </wctp-Alphanumeric>");
if (i1=-1){
payload = inputXML.substring(i+19, j);
}
}

catch (StringlndexOutOf BoundsException €) {
System.out.printIn(*Nothing Received?");
/I Give a generic error
out.printin(entOps.failure(" 301", "Parse Error",
"There was an error while parsing the XML"));

}
finally {
return payload;
}
}
/**

* This method writes the output to afile used by a webserver.
* @param out the PrintWriter object

* @param payload The payload received from

*/

private void outputHTML (String payload) {

try {
File outputFile = new File("'/var/apache/htdocs/WctpOutput.html™);

FileWriter out = new FileéWriter(outputFile);

out.write(" <html><body>" + payload + "</body></html>");

out.close();

24

}
catch (I0Exception €) {
System.out.printin("Error writing file: " + e);

}
}
/**
* This method sends a message to a pager.
*/

private void sendMessage() {
Il Instantiate the ClientOperations class
WctpEnterpriseOperations entOps = new WctpEnterpriseOperations();

Il Set up the URL
URL archWireless = null;

try {

}
catch (java.net. MaformedURL Exception mue) {

System.out.println("Unable to connect to specified URL");
}

// Build the operation

String body = entOps.submitRequest("INSERT_DEVICEID",
"WctpPageBuilder received a post from WCTP",
"INSERT_EMAIL", null, "TestMessagel D-1234");

archWireless = new URL ("http://wctp.arch.com/wctp");

/I Create a new HttpURL Connection object to use for communication

/I Note that this connection is reused in the getResponse() method

HttpURL Connection wctpConnection = entOps.sendW ctpPacket(
archWireless, body);

/I Read the response from the server (This also closes the response)

/I For simplicity, the response will not be parsed. We just assume that the
/I message was sent.

String response = entOps.readResponse(wctpConnection);

25

8 Example Enterprise Application Framework

The following is an example of a proxy model that is currently being used in some
enterprises to route WCTP traffic to the Arch gateway. A limited functionality reference
implementation is provided on the CD included with this manual.

Proxy Model

B 5

Standard Client Standard Client Standard Client

N \
) Ethernet J

Client
Response
abessa JualD

Standard Client Standard Client
—
[=]
1 _ (=]
] Submit Request EH
Unclaimed — Internet 1
Receipts HMHHHH Alday abessay
~ N
WCTP Proxy /[[I[I["][I]\
WCTP Server (Carrier)

Figure8-1 Client Message to Enter prise Request

The proxy receives a message from atransient client and creates a wctp- SubmitRequest
packet that is sent to the WCTP Server. The senderlD and messagel D fields are
transposed from the wctp- ClientM essage packet to the wctp- SubmitRequest packet. The
WCTP Server responds with a wctp-MessageReply packet. The proxy receives the reply
and generates the appropriate message to the transient client. Figure 10-1 shows transient
client on aLAN generating wctp-ClientM essage packets to a proxy.

Standard Client Standard Client Standard Client —
| [=d
Client Message
IEthemct) Unclaimed
) asuodsay Receipts
jLEllle}
i
D D — foooonn ~
WCTP Proxy

Standard Client Standard Client

Figure8-2 Client Queries

26

A transient client queries the proxy using the wctp-ClientQuery operation. The proxy
checks its database and responds with a wctp-ClientQueryResponse packet. The proxy
stores all client query requests as undelivered receipts until areceipt has been provided or
until it expires due to time limits. Figure 10-2 shows transient client on aLAN
generating wctp-ClientQuery packets to a proxy.

8.2 Push Based Model
=
U;é:(l:aeiirgte;d % Pushed Receipts Internet 5
(HTTP 1.0)
I NI
— 0000000 M~
WCTP Proxy / HHHDDDD\
WCTP Server (Carrier)

Figure 8-3 Proxy Receiving Pushed Responses

The preferred model for a proxy to obtain receipts from a WCTP Server is through a push
mechanism. The proxy simply listens on a port for receipts being posted to that port
using the HTTP protocol. The proxy updates records in the database with delivery
confirmations at the time when receipts are received.

8.3 Central Database for the Proxy
Database wctp_receipts
receipts_mst

PK FK
char(50) char(50) char(256) int char(256) Char(19)
track_no message_id sender_id notification| recipient_id timestamp
1234.23xz |1234.23xzArchrandy@arch.com 1 1234567 |2000-03-1T19:45:00
1234.239z |1234.239zArch|joe@arch.com 2 7654321 [2000-03-1T19:45:10
1234.9827z |1234.982zArch|jsue@arch.com 3 5545545 |2000-03-1T19:46:22

notification_mst

PK
int char(10)
type descr
1 Queued
2 Delivered
3 Read
4 Unknown

Table 1: Database Definition

Table 1 shows an example of a database structure used in the proxy model.

27

8.3.1 Inserting a Receipt

At the time that the proxy receives aresponse from the WCTP server the proxy detects if
the transient client has requested a receipt and, if so, inserts a new record into the
database. A unique key is generated that is duplicated and appended with the enterprise’s
name. Theinitia notification type is set as “Unknown.”

If the response was a failure, an entry is not made in the database. After that point, the
client will receive afailure or success response from the proxy based on the response
from the server.

8.3.2 Querying a Receipt
A receipt is queried in the database when atransient client performs a wctp-ClientQuery.

8.3.3 Updating a Receipt

A receipt is updated in the database when new status updates are received from the
WCTP server. This happens when a wctp- Statusl nfo operation is pushed to the proxy
serviet.

8.3.4 Purging the Database

The database can be purged at the discretion of the proxy administrator. The carrier,
however, is likely to have a predefined set of rules on how long they will continue to try
to deliver amessage. For example, the carrier may give up on adelivery confirmation
after 72 hours. If the proxy does not purge the database periodically, the database could
experience problems due to an unexpectedly fast growing table.

8.4 Using a Proxy in the Enterprise

8.4.1 Distributed Applications

The proxy model offers away to distribute client applications in the enterprise to alow
for easy updates and increased control over wireless traffic. Because the applications are
communicating over XML, the clients are entirely platform independent. The client may
be a Visua Basic application, web-based application, or any other language that has the
ability to communicate using sockets. This model allows ultimate flexibility in
controlling the flow of wireless traffic and monitoring the content of the traffic.

8.4.2 Access Control

One possibility for a proxy isto restrict access to a group of device ID’s or to limit the
amount of characters that may be sent in asingle page. A proxy may also be set up to
limit the amount of pages that a particular sender may send in aday. Let'stake an
example scenario to look at how these ideas may be used in a real-world application.
Widgets Inc. has 50 employees that carry two-way wireless devices. 10 of those
employees are management and need to have unlimited use of the device. So, the proxy
administrator sets up a group that is allowed to send 100 messages per day with 500
characters per message to any valid device ID for the management managers.

28

A second group is set up for five employees who dispatch information to field
technicians. They aso have a need to send one-hundred messages per day, but they only
need the ability to send to twenty field technicians and five managers. The proxy
administrator constructs a second group for the dispatchers. A third group is set up for
20 field technicians. This group is restricted to fifty messages per day and they can only
be sent to dispatchers. Of course, thisisonly asimple example. The possibilities for
similar applications are endless.

8.4.3 Logging

Another possibility with a proxy isto add the ability to log the content of messages. The
incoming XML can be written to afile to be later reviewed. The file may be written in a
format that lends itself to reporting software.

29

9 Whereto Find the Protocol

The protocol can be found at http://www.wctp.org/download.html. Read and agree to the
terms and conditions. Two main documents are available. The main protocol
specification defines the protocol. A use case companion is also at this site that provides

XML use case examples of WCTP.

30

10 Commercial Software

The following companies are known to produce software that uses WCTP.

Company URL
InfoRad, Inc. http://www.inforad.com
OnwOWw, Inc. http://www.2bpaged.com/
SilverLake http://www.si I verlake2000.com/productinfo/airsourceweb.ht
Communications m
Telamon http://www.telamon.com/

31

11 Available API's
The following is alist of known API’s for WCTP:

API Language URL
Arch WiredlessWCTP Factory Java, C++ http://content.arch.com/devel oper
Using WCTPto send XML Python http://sourceforge.net/projects/wctpxml-
Forms over HTTP python
WctpXML (WCTP Toolkit) C++ http://freshmeat.net/projects/wctpxml/
O-page C http://sourceforge.net/proj ects/g-page/

32

12 What’'s included on the CD?

The following Arch Wireless APIs:
?? WCTP API for Java
?? WCTP APl and for C++ (RedHat Linux 6.2 Binaries)
?? WCTP ActiveX Control

The following sample applications and documentation:
?? Arch Wireless Sample Enterprise Application
?? Arch Wireless Proxy Servlet for the Serviet 2.1 AP
?? Timeport PI935 Binary Test Application w/ Source Code
?? All source code presented in this manual.
?? This manua in PDF format.

33

